» » Сообщение по физике на тему взаимодействие тел. Взаимодействие тел в физике. Внешние и внутренние силы

Сообщение по физике на тему взаимодействие тел. Взаимодействие тел в физике. Внешние и внутренние силы

Взаимодействие (в физике) Взаимодействие в физике, воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой В. является потенциальная энергия. Первоначально в физике утвердилось представление о том, что В. между телами может осуществляться непосредственно через пустое пространство, которое не принимает никакого участия в передаче В.; при этом передача В. происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состояла так называемая концепция дальнодействия. Однако эти представления были оставлены, как не соответствующие действительности после открытия и исследования электромагнитного поля. Было доказано, что В. электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на др. частицы, не в тот же момент, а лишь спустя конечное время. В пространстве между частицами происходит некоторый процесс, который распространяется с конечной скоростью. Соответственно имеется «посредник», осуществляющий В. между заряженными частицами. Этот посредник был назван электромагнитным полем. Каждая электрически заряженная частица создаёт электромагнитное поле, действующее на другие частицы. Скорость распространения электромагнитного поля равна скорости света в пустоте: ~ 300 000 км/сек . Возникла новая концепция ‒ концепция близкодействия, которая затем была распространена и на любые другие В. Согласно этой концепции, В. между телами осуществляются посредством тех или иных полей, непрерывно распределённых в пространстве. Так, всемирное тяготение осуществляется гравитационным полем.

После появления квантовой теории поля представление о В. существенно изменилось. Согласно этой теории, любое поле состоит из частиц ‒ квантов этого поля. Каждому полю соответствуют свои частицы. Например, квантами электромагнитного поля являются фотоны. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное В. в квантовой теории поля является результатом обмена частиц фотонами, т. е. фотоны являются переносчиками этого В. Аналогично, другие виды В. возникают в результате обмена частиц квантами соответствующих полей (см. Квантовая теория поля ).

Несмотря на разнообразие воздействий тел друг на друга (зависящих от В. слагающих их элементарных частиц), в природе по современным данным имеется лишь четыре типа фундаментальных В. Это (в порядке возрастания интенсивности В.): гравитационные В. (см. Тяготение ), слабые взаимодействия (отвечающие за распады элементарных частиц), электромагнитные взаимодействия , сильные взаимодействия (обеспечивающие, в частности, связь частиц в атомных ядрах: ядерные силы возникают благодаря тому, что протоны и нейтроны обмениваются частицами ядерного поля ‒ пи-мезонами ). Интенсивности В. определяются так называемыми константами связи (в частности, для электромагнитных В. константой связи является электрический заряд).

Современная квантовая теория электромагнитных В. превосходно описывает все известные электромагнитные явления. Количественная теория сильных и слабых В. пока не построена. В обычных гравитационных В. тел квантовые эффекты считаются несущественными.

Кроме перечисленных силовых В., в системах, состоящих из одинаковых частиц (которые, согласно одному из принципов квантовой механики ‒ тождественности принципу , являются неразличимыми), появляются специфические несиловые В., не зависящие от констант связи. Так, частицы с полуцелым спином испытывают эффективное отталкивание (в соответствии с Паули принципом ), а частицы с целым спином, напротив, ‒ эффективное притяжение (см. Статистическая физика , раздел Квантовая статистика). Эти несиловые В. могут также приводить к изменению силовых В. между частицами (см. Обменное взаимодействие ).

Лит.: Григорьев В. И., Мякишев Г. Я., Силы в природе, 3 изд., М., 1969.

Г. Я. Мякишев


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Взаимодействие (в физике)" в других словарях:

    Взаимодействие, одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… …

    В физике, воздействие тел или ч ц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей хар кой В. явл. потенц. энергия. Первоначально… … Физическая энциклопедия

    I Взаимодействие одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… … Большая советская энциклопедия

    взаимодействие - ВЗАИМОДЕЙСТВИЕ философская категория, отражающая процессы воздействия объектов друг на друга, их взаимную обусловленность и порождение одним объектом другого. В. универсальная форма движения и развития, оно определяет существование и… … Энциклопедия эпистемологии и философии науки

    В физике элементарных частиц взаимодействие Юкавы, названное в честь Хидэки Юкавы, это взаимодействие между скалярным полем и дираковским полем: (скаляр) или (псевдоскаляр). Взаимодействие Юкавы можно использовать для описания сильных ядерных… … Википедия

    Комплекс задач о взаимодействии многих тел достаточно обширный, и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на: комплекс задач столкновения двух и более… … Википедия

    В физике взаимодействие электронов с фононами (квантами колебаний кристаллической решётки). Причиной электрон фононного взаимодействия является изменение электрического поля из за деформации решётки, называемое деформационным потенциалом.… … Википедия

    Взаимодействие систем заряженных частиц на большом расстоянии друг от друга при условии, что полный электрический заряд каждой системы и её электрический Дипольный момент равны нулю. Если электрический заряд или дипольный момент системы… … Большая советская энциклопедия

    Слабое взаимодействие, или слабое ядерное взаимодействие одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия … Википедия

    Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

Книги

  • Взаимодействие излучения с атомами и наночастицами: Учебное пособие , Астапенко Валерий Александрович. Книга посвящена систематическому изложению физики и способов описания основных элементарных процессов, возникающих при взаимодействии электромагнитного поля сатомами, молекулами и…

195. На столе лежит книга. С какими телами она взаимодействует? Почему книга находится в покое?
Лежащая на столе книга взаимодействует с Землей и со столом. Она находится в покое, поскольку эти взаимодействия уравновешены.

196. Взаимодействием каких тел обусловливается движение облаков; стрелы, выпущенной из лука; снаряда внутри ствола пушки при выстреле; вращение крыльев ветряного двигателя?
Взаимодействием капелек воды, входящих в облако, с воздушными потоками и Землей.
Взаимодействием с тетивой лука, Землей и воздухом.
Взаимодействием с газами, образовавшимися в результате взрыва пороха, стволом пушки, ее ложем и Землей.
Взаимодействием крыльев мельницы с набегающим потоком воздуха.

197. Приведите 3-5 названий тел, в результате взаимодействия с которыми мяч может прийти в движение (или изменить направление своего движения).
Нога футболиста, ракетка теннисиста, клюшка для гольфа, бита бейсболиста, воздушный поток.

198. Что произойдет с подвешенной на нитях пружиной, если спичкой пережечь нить АВ, сжимающую ее (рис. 38)?
Действие нити А В на пружину прекратится, и она разожмется и придет в движении.

199. Почему пожарному трудно удерживать брандспойт, из которого бьет вода?
Из-за явления отдачи.

200. Почему отклоняется трубка при вытекании из нее воды (рис. 39)?
В результате взаимодействия вытекающей воды и трубки последняя придет в движение.

201. Почему трубка не отклоняется, если на пути вытекающей из нее воды (см. задачу 200) поместить картонку, укрепленную на трубке, как показано на рисунке 40?
Взаимодействие между трубкой и водой уравновешивается взаимодействием между картоном и трубкой, и поэтому трубка остается в покое.

202. Почему при вытекании воды сосуд, подвешенный на нити, вращается (рис. 41)?
Истекающий из трубок поток воды действует на стенки тру¬бок. В результате сосуд вращается.

203. Колба подвешена на нити (рис. 42). Останется ли колба в состоянии покоя при сильном кипении воды в ней? Явление объясните.
Нет. см. №202.

204. В некоторых парках на детских площадках для игр устанавливают деревянные цилиндры (барабаны), вращающиеся на горизонтальной оси. В каком направлении и когда по нему бежит ребенок?
Ребенок отталкивается от цилиндра, и тот движется в противоположном направлении.

205. Рыба может двигаться вперед, отбрасывая жабрами струи воды. Объясните это явление.
Этот принцип движения называется реактивным. Отбрасываемая жабрами рыбы вода действует на рыбу, которая за счет этого приходит в движение.

206. Какое назначение у водоплавающих птиц имеют перепончатые лапки?
Перепончатые лапки позволяют увеличивать взаимодействие между водой и птицей.

207. Почему при выстреле приклад винтовки надо плотно прижимать к плечу?
Неплотно прижатый приклад в результате отдачи может повредить плечо.

208. Почему при выстреле снаряд и орудие получают разные скорости?
Масса пушки во много раз больше массы снаряда, и соответственно скорость пушки будет во много раз меньше скорости снаряда.

209. Мальчик прыгает с нагруженной баржи на берег. Почему движение баржи в сторону, противоположную прыжку, незаметно?
Масса баржи гораздо больше массы мальчика, и в результате скорость пушки практически равна нулю.

210. На одинаковом расстоянии от берега находятся лодка с грузом и такая же лодка без груза. С какой лодки легче спрыгнуть на берег? Почему?
Легче прыгать с нагруженной лодки, поскольку ее масса больше.

211. а) В сжатом состоянии пружина на подставке удерживается с помощью нити (рис. 43, а). Если в точке А нить пережечь, то пружина взлетит. Укажите, взаимодействием каких тел вызывается движение пружины.
б) Если на пружину предварительно поместить, например, мяч, то и он придет в движение. Взаимодействием каких тел будет вызвано движение мяча?
в) На левой тележке лежит кубик из железа, на правой - из дерева (рис. 43, б). Между тележками помещена сжатая с помощью нити пружина. Если нить пережечь, то тележки придут в движение. Какая тележка приобретет большую скорость? Почему?

а) Взаимодействием пружины, опоры и нити.
б) Взаимодействием пружины, нити, мяча и опоры.
в) m1v1 = m2v2. Значит, большую скорость приобретет тележка с деревянным бруском, поскольку он имеет меньшую массу.

212. Левая тележка (см. задачу 211, в) приобрела скорость 4 см/с, правая - 60 см/с. Масса какой тележки больше и во сколько раз?

213. Чему равна масса левой тележки (см. задачу 212), если масса правой тележки равна 50 г?

214. Пешеход массой 90 кг движется со скоростью 3,6 км/ч, а собака массой 7,5 кг бежит со скоростью 12 м/с. Найдите отношение импульсов пешехода и собаки.

215. а) Стальная пластина прикреплена к концу пружины (рис. 44). Пружина в сжатом состоянии удерживается нитью. Если пережечь нить, то пружина выпрямляется и стальная пластина одновременно ударяет шары, которые лежат на столе. Массы шаров равны, но сделаны они из разных металлов (алюминий, свинец, сталь). Из какого металла сделаны шар 1, шар 2 и шар 3? (На рисунке положение каждого шара после удара обозначено пунктиром.)
б) Между тележками помещена сжатая с помощью нити пружина (см. рис. 43, б). Если нить пережечь, то в результате взаимодействия с пружиной тележки придут в движение. Как будут отличаться скорости, приобретенные тележками, если масса левой тележки составляет 7,5 кг, а правой - 1,5 кг?

216. Пружина, концы которой стянуты нитью, помещена между тележками так, как показано на рисунке 45. На тележках сосуды с песком. Когда нить пережгли, правая тележка приобрела большую скорость, чем левая. Чем это можно объяснить?
Левая тележка тяжелее правой.

217. Какова масса правой тележки (см. задачу 216), если она приобрела в 0,5 раза большую скорость, чем левая тележка, масса которой с грузом составляет 450 г?

218. Мальчик выбирает веревку, и лодки сближаются в озере (рис. 46). Какая из двух одинаковых лодок к моменту сближения приобретает большую скорость? Почему?
Большую скорость имеет левая лодка, поскольку она легче правой, в которой сидит ребенок.

219. При взаимодействии двух тележек их скорости изменились на 20 и 60 см/с. Масса большей тележки 0,6 кг. Чему равна масса меньшей тележки?

220. К лежащим на столе шарам были приложены в течение одного и того же промежутка времени одинаковые силы. При этом шар массой 3 кг приобрел скорость 15 см/с. Какую скорость приобрел шар массой 1 кг?

221. С неподвижной надувной лодки массой 30 кг на берег прыгнул мальчик массой 45 кг. При этом лодка приобрела скорость 1,5 м/с относительно берега. Какова скорость мальчика относительно лодки?

222. Мальчик, масса которого 46 кг, прыгнул на берег со скоростью 1,5 м/с с неподвижного плота массой 1 т. Какую скорость приобрел плот относительно берега?

223. Могут ли два неподвижных вначале тела в результате взаимодействия друг с другом приобрести одинаковые по численному значению скорости?
Могут, при условии, что их массы равны.

224. Воздух под поршнем насоса сжали. Изменилась ли масса воздуха?
Масса воздуха не изменилась.

225. Гирю опустили в сосуд с водой. Изменилась ли масса гири?
Масса гири не изменилась.

226. Соревнуясь в перетягивании, два мальчика тянут веревку в разные стороны, прикладывая к ней силы по 500 Н каждый. Разорвется ли веревка, если она выдерживает силу натяжения лишь 800 Н?
Не разорвется, поскольку на нее действует сила всего в 500 Н.

227. Изменится ли масса воды, когда часть ее обратится в лед или пар?
Ее масса изменится на величину, равную массе льда или пара.

Толкните стену. Прямо сейчас подойдите и сильно толкните стену. Что-нибудь произошло? Вряд ли. Тогда толкните стену не просто сильно, а изо всех сил. На этот раз произошло? Со стеной - вряд ли, а вот вы, скорее всего, отлетели от стены на некоторое расстояние. Как же так?

Ведь это вы толкали стену, а получилось, что это стена толкнула вас. Еще пример - бильярд. Когда мы бьем кием по шару и попадаем в другой шар, то второй шар начинает движение, но и первый при этом отлетает в обратную сторону или же вбок. Третий пример - это молоток. Когда молотком бьют по гвоздю, то не только гвоздь забивается в стену, но и молоток отскакивает обратно и может дать по лбу незадачливому умельцу. Во всех этих примерах мы действовали одним телом на другое, но при этом оказалось, что и другое тело тоже действовало на первое. В физике действие двух тел друг на друга называется взаимодействием.

Взаимодействие тел в физике

При взаимодействии двух тел всегда результат ощущают на себе оба тела. То есть, говоря простым языком, всегда при воздействии на что-то следует отдача. Наверное, все драчливые мальчишки знают, что во время драки страдает не только лицо противника, но и собственные кулаки можно здорово поразбивать. То есть, пока один хулиган атакует кулаком нос другого хулигана, нос в это время атакует кулак в ответ. Однако, нос при этом страдает гораздо больше. Ну, с носом все понятно - он мягче и потому сильнее повреждается, а вот почему шар при ударе кием отлетает намного сильнее, чей кий в это же время? То есть, не отлетает же кий, и мы вместе с ним, на несколько метров от стола? А это объясняется тем, что тела бывают более инертны и менее инертны.

Виды взаимодействия тел и мера взаимодействия

Про тело, которое при взаимодействии изменяет свою скорость медленнее, говорят, что оно более инертно и имеет большую массу. А тело, которое быстрее изменяет свою скорость, мы называем менее инертным, и говорим, что оно имеет меньшую массу. Именно поэтому мы не отлетаем от стола при ударе кием по шару и, наоборот, отлетаем от стены, при попытке толкнуть стену и, соответственно весь дом, к которому она приделана. Масса нас с кием намного больше массы бильярдного шара, но при этом намного меньше массы дома, даже если мы взгромоздим себе на плечи жену, трех детей, связку баранок и кошку.

Знакомство с взаимодействием тел рассматривается в курсе физики 7 класса.

Мерой взаимодействия тел является сила. Существует 4 не сводящихся друг к другу вида взаимодействий: гравитационное, электромагнитное, сильное и слабое. Но эту тему подробно разбирают в курсе 10 класса.

Взаимодействие тел

Примеров взаимодействия тела можно привести сколько угодно. Когда вы, находясь в лодке, начнёте за веревку подтягивать другую, то и ваша лодка обязательно продвинется вперед. Действуя на вторую лодку, вы заставляете ее действовать на вашу лодку.

Если вы ударите ногой по футбольному мячу, то немедленно ощутите обратное действие на ногу. При соударении двух бильярдных шаров изменяют свою скорость, т.е. получают ускорение оба шара. Все это проявление общего закона взаимодействия тел.

Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите, например, на гладкий стол два сильных магнита с разными полюсами навстречу друг другу, и вы тут же обнаружите, что начнут двигаться навстречу друг другу. Земля притягивает Луну (сила всемирного тяготения) и заставляет ее двигаться по криволинейной траектории; в свою очередь Луна также притягивают Землю (тоже сила всемирного тяготения). Хотя, естественно, в системе отсчёта, связанной с Землей, ускорение земли, вызываемое этой силой, нельзя обнаружить непосредственно, оно проявляется в виде приливов.

Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел. Грубые измерения сил можно произвести на следующих опытах:

1 опыт. Возьмем два динамометра, зацепим друг за друга их крючки, и взявшись за кольца, будем растягивать их, следя за показаниями, обоих динамометров.

Мы увидим, что при любых растяжениях показания обоих динамометров будут одинаковы; значит, сила, с которой первый динамометр действует на второй, равна силе, с которой второй динамометр действует на первый.

2 опыт. Возьмем достаточно сильный магнит и железный брусок, и положим их на катки, чтобы уменьшить трение о стол. К магниту и бруску прикрепим одинаковые мягкие пружины, зацепленными другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

Опыт показывает, что к моменту прекращения движения пружины оказываются растянутыми одинаково. Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы.

Так как магнит покоится, то сила равна по модулю и противоположна по направлению силе, с которой действует на него брусок.

Точно также равны по модулю и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины.

Опыт показывает, силы взаимодействия между двумя телами равны по модулю и противоположны по направлению и в тех случаях, когда тела движутся.

3 опыт. На двух тележках, которые могут катиться по рельсам, стоят два человека А и В. Они держат в руках концы веревки. Легко обнаружить, что независимо от того, кто натягивает веревку, А или В или оба вместе, тележки всегда приходят в движение одновременно и притом в противоположных направлениях. Измеряя ускорения тележек, можно убедиться, что ускорения обратно пропорциональны массам каждой из тележек (вместе с человеком). Отсюда следует, что силы, действующие на тележки, равны по модулю.

Первый закон Ньютона. Инерциальные системы отсчета

В качестве первого закона динамики Ньютон принял закон, установленный еще Галилеем: материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет ее из этого состояния.

Первый закон Ньютона показывает, что покоя или равномерного прямолинейного движения не требует для своего поддержания каких либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое их инертностью.

Соответственно первый закон Ньютона называют законом инерции, а движение тела в отсутствии воздействий со стороны других тел – движением по инерции.

Механическое движение относительно: его характер для одного и того же тела может быть различным в разных системах отсчета, движущихся друг относительно друга. Например, космонавт, находящийся на борту искусственного спутника Земли, неподвижен в системе отсчета, связанной со спутником. В то же время по отношению к Земле он движется вместе со спутником по эллиптической орбите, т.е. не равномерно и не прямолинейно.

Естественно поэтому, что первый закон Ньютона должен выполняться не во всякой системе отсчета. Например, шар, лежащий на гладком полу каюты корабля, который идет прямолинейно и равномерно, может прийти в движение по полу без всякого воздействия на него со стороны каких-либо тел. Для этого достаточно, чтобы скорость корабля начала изменяться.

Система отсчета, по отношению к которой материальная точка, свободная от внешних воздействий, покоится или движется равномерно и прямолинейно, называется инерциальной системой отсчета. Содержание первого закона ржание первого закона Ньютона сводится по существу к двум утверждениям: во первых, что все тела обладают свойством инертности и, во вторых, что существуют инерциальные системы отсчета.

Любые две инерциальные системы отсчета могут двигаться друг относительно друга только поступательно и притом равномерно и прямолинейно. Экспериментально установлено, что практически инерциальна гелиоцентрическая система отсчета, начало координат которой находится в центре масс Солнечной системы (приближенно – в центре Солнца), а оси проведены в направлении трех удаленных звезд, выбранных, например, так, чтобы оси координат были взаимно перпендикулярны.

Лабораторная система отсчета, оси координат которой жестко связаны с Землей, не инерциальна главным образом из-за суточного вращения Земли. Однако Земля вращается столь медленно, что максимальное нормальное ускорение точек ее поверхности в суточном вращении не превосходит 0,034м/.поэтому в большинстве практических задач лабораторную систему отсчета можно приближенно считать инерциальной.

Инерциальные системы отсчета играют особую роль не только в механике, но также и во всех других разделах физики. Это связано с тем, что, согласно принципу относительности Эйнштейна, математическое выражение любого физического закона должно иметь один и тот же вид во всех инерциальных системах отсчета.

Силой называется векторная величина, являющаяся мерой механического действие на рассматриваемое тело со стороны других тел. Механическое взаимодействие может осуществляться как между непосредственно контактирующими телами (например, при трении, при давлении тел друг на друга), так и между удаленными телами. Особая форма материи, связывающая частицы вещества в единые системы и передающая с конечной скоростью действия одних частиц на другие, называются физическим полем, или просто полем.

Взаимодействие между удаленными телами осуществляется посредством создаваемых ими гравитационных и электромагнитных полей (например, притяжении планет к Солнцу, взаимодействие заряженных тел, проводников с током и т.п.). Механическое действие на данное тело со стороны других тел проявляется двояко. Оно способно вызывать, во-первых, изменение состояния механического движения рассматриваемого тела, а во-вторых, - его деформацию. Оба эти проявления действия силы могут служить основой для измерения сил. Например, измерения сил с помощью пружинного динамометра основанного на законе Гука для продольного растяжения. пользуясь понятием силы в механике обычно говорят о движении и деформации тела под действием приложенных к нему сил.

При этом, конечно, каждой силе всегда соответствует некоторое тело, действующее на рассматриваемое с этой силой.

Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения. Прямая, вдоль которой направлена сила, называется линией действия силы.

Поле, действующее на материальную точку с силой F, называется стационарным полем, если оно не изменяется с течением времени t, т.е. если в любой точке поля сила F не зависит явно от времени:

Для стационарности поля необходимо, чтобы создающие его тела покоились относительно инерциальной системы отсчета, используемой при рассмотрении поля.

Одновременное действие на материальную точку M нескольких сил эквивалентно действию одной силы, называемой равнодействующей, или результирующей, силой и равной их геометрической сумме.

Она представляет собой замыкающую многоугольника сил


Масса. Импульс

В классической механике массой материальной точки называется положительная скалярная величина, являющаяся мерой инертности этой точки. Под действием силы материальная точка изменяет свою скорость не мгновенно, постепенно, т.е. приобретает конечное по величине ускорение, которое тем меньше, чем больше масса материальной точки. Для сравнения масс и двух материальных точек достаточно измерить модули и ускорений, приобретаемых этими точками под действием одной и той же силы:

Обычно массу тела находят путем взвешивания на рычажных весах.

В классической механике считается, что:

а) Масса материальной точки не зависит от состояния движения точки, являясь ее неизменной характеристикой.

б) Масса – величина аддитивная, т.е. масса системы (например, тела) равна сумме масс вех материальных точек, входящих в состав этой системы.

в) Масса замкнутой системы остается неизменной при любых процессах, происходящих в этой системе (закон сохранения массы).

Плотностью ρ тела в данной его точке M называется отношение массы dm малого элемента тела, включающего точку M, к величине dV объема этого элемента:

Размеры рассматриваемого элемента должны быть столь малы, чтобы изменением плотности в его пределах можно было во много раз больше межмолекулярных расстояний.

Тело называется однородным, если во всех его точках плотность одинакова. Масса однородного тела равна произведению его плотности на объем:

Масса неоднородного тела:

где ρ – функция координат, а интегрирование проводится по всему объему тела. Средней плотностью (ρ) неоднородного тела называется отношение его массы к объему: (ρ)=m/V.

Центром масс системы материальных точек называется точка С, радиус-вектор которой равен:

где и – масса и радиус-вектор i-й материальной точки, n – общее число материальных точек в системе, а m= - масса всей системы.

Скорость центра масс:

Векторная величина , равная произведению массы материальной точки на ее скорость , называется импульсом, или количеством движения, этой материальной точки. Импульсом системы материальных точек называется вектор p, равный геометрической сумме импульсов всех материальных точек системы:

импульс системы равен произведению массы всей системы на скорость центра ее масс:

Второй закон Ньютона

Основным законом динамики материальной точки является второй закон Ньютона, который говорит о том, как изменяется механическое движение материальной точки под действием приложенных к ней сил. Второй закон Ньютона гласит: скорость изменения импульса ρ материальной точки равна действующей на нее силе F, т.е.

где m и v – масса и скорость материальной точки.

Если на материальную точку одновременно действуют несколько сил, то под силой F во втором законе Ньютона нужно понимать геометрическую сумму всех действующих сил – как активных, так и реакций связей, т.е. равнодействующую силу.

Векторная величина F dt называется элементарном импульсом силы F за малое время dt ее действия. Импульс силы F за конечный промежуток времени от до равен определенному интегралу:


где F, в общем случае, зависит от времени t.

Согласно второму закону Ньютона изменение импульса материальной точки равно импульсу действующей на нее силы:

dp = F dt и ,

где – значение импульса материальной точки в конце () и в начале () рассматриваемого промежутка времени.

Поскольку в ньютоновской механике масса m материальной точки не зависит от состояния движения точки, то

Поэтому математическое выражение второго закона Ньютона можно также представить в форме

где – ускорение материальной точки, r – ее радиус-вектор. Соответственно формулировка второго закона Ньютона гласит: ускорение материальной точки совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.

Касательное и нормальное ускорение материальной определяются соответствующими составляющими силы F


где – модуль вектора скорости материальной точки, а R – радиус кривизны ее траектории. Сила , сообщающая материальной точке нормальное ускорение, направлена к центру кривизны траектории точки и потому называется центростремительной силой.

Если на материальную точку одновременно действуют несколько сил , то ее ускорение

где . Следовательно, каждая из сил, одновременно действующих на материальную точку, сообщает ей такое же ускорение, как если бы других сил не было (принцип независимости действия сил).

Дифференциальным уравнением движения материальной точки называется уравнение

В проекциях на оси прямоугольной декартовой системы координат это уравнение имеет вид

где x, y и z – координаты движущейся точки.


Третий закон Ньютона. Движение центра масс

Механическое действие тел друг на друга проявляется в виде их взаимодействия. Об этом говорит третий закон Ньютона: две материальные точки действуют друг на друга с силами, которые численно равны и направлены в противоположные стороны вдоль прямой, соединяющей эти точки.

Если – сила, действующая на i-ю материальную точку со стороны k-й, а – сила действующая на k-ю материальную точку со стороны i-й, то, согласно третьему закону Ньютона,

Сила приложены к разным материальным точкам и могут и взаимно уравновешиваться только в тех случаях, когда эти точки принадлежат одному и тому же абсолютно твердому телу.

Третий закон Ньютона является существенным дополнением к первому и второму законам. Он позволяет перейти от динамики отдельной материальной точки к динамике произвольной механической системы (системы материальных точек). Из третьего закона Ньютона следует, что в любой механической системе геометрическая сумма всех внутренних сил равна нулю:

где n – число материальных точек, входящих в состав системы, а .


Вектор , равный геометрической сумме все внешних сил, действующих на систему, называется главным вектором внешних сил:

где – результирующая внешних сил, приложенных к i-й материальной точке.

Из второго и третьего законов Ньютона следует, что первая производная по времени t от импульса p механической системы равна главному вектору всех внешних сил, приложенных к системе,

.

Это уравнение выражает закон изменения импульса системы.

Так как , где m – масса системы, а – скорость ее центра масс, то закон движения центра масс механической системы имеет вид

, или ,

где – ускорение центра масс. Таким образом, центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе.

Если рассматриваемая система – твердое тело, которое движется поступательно, то скорости всех точек тела и его центра масс одинаковы и равны скорости v тела. Соответственно ускорение тела , и основное уравнение динамики поступательного движения твердого тела имеет вид

Утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе, физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности...

Величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени. Именно второй закон Ньютона придает всей классической механике ее особую прелесть – начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда...